skip to Main Content
Design Lab’s Edward Wang wins NIH R21 for work on Smartphone-based Alzheimer’s Screening

Design Lab’s Edward Wang wins NIH R21 for work on Smartphone-based Alzheimer’s Screening

Design Lab’s Edward Wang wins NIH R21 for work on Smartphone-based Alzheimer’s Screening

Design Lab’s Edward Wang wins NIH R21 for work on Smartphone-based Alzheimer’s Screening

Design Lab’s Edward Wang, who is a jointly appointed professor in Electrical & Computer Engineering in Jacobs School of Engineering at UC San Diego, wins a National Institutes of Health (NIH) R21 through the National Institute of Aging (NIA) for his work around transforming smartphones into pocket-sized personal health monitors. 

The NIA has selected Design Lab’s Edward Wang, who directs the Digital Health Lab, to receive NIH R21 funding for his work with Co-investigator Eric Granholm, Director of UCSD’s Center for Mental Health Technology (MHTech), to develop a smartphone app that can screen for early signs of cognitive decline indicative of Alzheimer’s Disease (AD). An NIH R21, also known as the Exploratory/Development Grant, provides support in the early and conceptual stages of a project’s development. As part of a national push towards combating the debilitating effects of AD, the National Institute of Aging looked towards funding novel ways to screen for AD through the use of digital technologies.

Edward Wang (left), Eric Granholm (right)

In the proposal, “Smartphone Pupillometer for At-Home Screening for Risk of Alzheimer’s Disease,” Wang, along with MHTech director and professor of Psychiatry Eric Granholm, aims to leverage camera systems found in smartphones to capture pupillary responses to cognitive tests as an indicator of the integrity of a specific part of the brain, the locus coeruleus, that has been shown to be one of the first sites affected by AD-related processes. By taking advantage of the smartphone as the vehicle for conducting such a test, Wang and Granholm believe that this approach of using digital technologies to capture physiological signals has the potential of significantly driving down the cost of deploying these screening solutions widely to combat public health challenges like AD. “By further enhancing the signals that are captured using just your phone with signal processing and machine learning, we are able to derive, what are known as, digital biomarkers,” Wang says. This approach strongly aligns with the NIA’s Notice of Special Interest, which states that “current biomarkers for early detection of prodromal AD […]  are costly and invasive”, and digital biomarkers “can be used to inform disease prediction and management at both the individual and populational level.” 

AD is a progressive degenerative disorder of the brain and is the sixth leading cause of death in the United States, with the latest statistics showing that at least five million Americans over the age of 65 suffer from the disease. Not only is it the most common form of dementia of elderly adults, it is projected that cases of AD will double by 2025. By 2050, it is projected that a total annual cost for health care for people with AD will be more than $1 trillion. ADis clearly a public health crisis. “Our solution is based on previous findings in our research with older adults with mild cognitive impairment, where we studied how differences in pupil dilation in response to memory tests are associated with very early signs of AD,” Granholm says. “It is based on these findings that we are developing this smartphone solution.” If successful, Granholm notes, it would be possible for older adults to perform this test even in the comforts of their own home or by their primary care provider. This is compared with what is available today, which are far more invasive solutions like PET/MRI imaging and lumbar puncture for biomarkers in the spinal fluid.  

As a faculty in the Design Lab, Wang has a particular interest in developing technologies through a lens of human centered design. Wang has had a record of inventing new smartphone-based health monitoring solutions such as hemoglobin/anemia screening, blood pressure monitoring, and ocular disease. In developing these solutions, Wang has worked with a wide range of collaborators across the world to develop and test these systems with end users to make sure that the purported solutions truly can work with the target users and in realistic conditions. “Sometimes what we find is that an idea works well in lab settings where we can control the lighting and temperature of the room, but completely fails in realistic conditions that screening tools like these have to operate under.”


Wang working in a village in the Amazon Jungle of Peru testing his smartphone hemoglobin monitor

In a previous workaround anemia screening, Wang worked with NGOs in Peru to bring his prototype app into villages nestled in the Amazonian Jungle, where NGO staff regularly travel to in order to perform anemia screening and treatments. “It turns out, we never considered that the main use case for our technology is really to screen for anemia in kids under 3 years old. Although the physics still holds, behaviorally, kids at that age are so different that we basically couldn’t get the kids to stay still long enough to be able to measure them with our app,” Wang reflects. “One of the common misconceptions in engineering research is that we can always build it to work better with enough resources once a technology leaves the lab,” Wang says, “The issue with that kind of approach  is that sometimes that can lead us into solutions that don’t have a chance of working. That is why human centered design being a central loop in the research is so important.”

Wang notes that keeping the elder user base in mind is crucial in the success of this research endeavor. “One of the things I think is particularly interesting in working on digital technology for the older population is that it requires a lot more nuances around usability,” Wang explains. “Our big hope is that [our app] works with little to no training with either home care providers or with the older adults themselves.” Wang cautions, however, that these solutions are far from ready and requires extensive research on how well such digital biomarkers can differentiate diseases and how they will ultimately serve in the entire ecosystem of healthcare. “Our research aims to solve big healthcare problems by looking for creative ways to invent new ways our society can screen and treat diseases. But this shift that brings healthcare closer to everyday life, literally into our pockets, means that we will have to be very intentional in our designs of how people will use these technologies to be not only useful, but safe as well.”

Read more about Wang’s research on digital health technologies at UCSD. 

Congratulations, Edward!

Design Lab’s Edward Wang, who is a jointly appointed professor in Electrical & Computer Engineering in Jacobs School of Engineering at UC San Diego, wins a National Institutes of Health (NIH) R21 through the National Institute of Aging (NIA) for his work around transforming smartphones into pocket-sized personal health monitors. 

The NIA has selected Design Lab’s Edward Wang, who directs the Digital Health Lab, to receive NIH R21 funding for his work with Co-investigator Eric Granholm, Director of UCSD’s Center for Mental Health Technology (MHTech), to develop a smartphone app that can screen for early signs of cognitive decline indicative of Alzheimer’s Disease (AD). An NIH R21, also known as the Exploratory/Development Grant, provides support in the early and conceptual stages of a project’s development. As part of a national push towards combating the debilitating effects of AD, the National Institute of Aging looked towards funding novel ways to screen for AD through the use of digital technologies.

Edward Wang (left), Eric Granholm (right)

In the proposal, “Smartphone Pupillometer for At-Home Screening for Risk of Alzheimer’s Disease,” Wang, along with MHTech director and professor of Psychiatry Eric Granholm, aims to leverage camera systems found in smartphones to capture pupillary responses to cognitive tests as an indicator of the integrity of a specific part of the brain, the locus coeruleus, that has been shown to be one of the first sites affected by AD-related processes. By taking advantage of the smartphone as the vehicle for conducting such a test, Wang and Granholm believe that this approach of using digital technologies to capture physiological signals has the potential of significantly driving down the cost of deploying these screening solutions widely to combat public health challenges like AD. “By further enhancing the signals that are captured using just your phone with signal processing and machine learning, we are able to derive, what are known as, digital biomarkers,” Wang says. This approach strongly aligns with the NIA’s Notice of Special Interest, which states that “current biomarkers for early detection of prodromal AD […]  are costly and invasive”, and digital biomarkers “can be used to inform disease prediction and management at both the individual and populational level.” 

AD is a progressive degenerative disorder of the brain and is the sixth leading cause of death in the United States, with the latest statistics showing that at least five million Americans over the age of 65 suffer from the disease. Not only is it the most common form of dementia of elderly adults, it is projected that cases of AD will double by 2025. By 2050, it is projected that a total annual cost for health care for people with AD will be more than $1 trillion. ADis clearly a public health crisis. “Our solution is based on previous findings in our research with older adults with mild cognitive impairment, where we studied how differences in pupil dilation in response to memory tests are associated with very early signs of AD,” Granholm says. “It is based on these findings that we are developing this smartphone solution.” If successful, Granholm notes, it would be possible for older adults to perform this test even in the comforts of their own home or by their primary care provider. This is compared with what is available today, which are far more invasive solutions like PET/MRI imaging and lumbar puncture for biomarkers in the spinal fluid.  

As a faculty in the Design Lab, Wang has a particular interest in developing technologies through a lens of human centered design. Wang has had a record of inventing new smartphone-based health monitoring solutions such as hemoglobin/anemia screening, blood pressure monitoring, and ocular disease. In developing these solutions, Wang has worked with a wide range of collaborators across the world to develop and test these systems with end users to make sure that the purported solutions truly can work with the target users and in realistic conditions. “Sometimes what we find is that an idea works well in lab settings where we can control the lighting and temperature of the room, but completely fails in realistic conditions that screening tools like these have to operate under.”


Wang working in a village in the Amazon Jungle of Peru testing his smartphone hemoglobin monitor

In a previous workaround anemia screening, Wang worked with NGOs in Peru to bring his prototype app into villages nestled in the Amazonian Jungle, where NGO staff regularly travel to in order to perform anemia screening and treatments. “It turns out, we never considered that the main use case for our technology is really to screen for anemia in kids under 3 years old. Although the physics still holds, behaviorally, kids at that age are so different that we basically couldn’t get the kids to stay still long enough to be able to measure them with our app,” Wang reflects. “One of the common misconceptions in engineering research is that we can always build it to work better with enough resources once a technology leaves the lab,” Wang says, “The issue with that kind of approach  is that sometimes that can lead us into solutions that don’t have a chance of working. That is why human centered design being a central loop in the research is so important.”

Wang notes that keeping the elder user base in mind is crucial in the success of this research endeavor. “One of the things I think is particularly interesting in working on digital technology for the older population is that it requires a lot more nuances around usability,” Wang explains. “Our big hope is that [our app] works with little to no training with either home care providers or with the older adults themselves.” Wang cautions, however, that these solutions are far from ready and requires extensive research on how well such digital biomarkers can differentiate diseases and how they will ultimately serve in the entire ecosystem of healthcare. “Our research aims to solve big healthcare problems by looking for creative ways to invent new ways our society can screen and treat diseases. But this shift that brings healthcare closer to everyday life, literally into our pockets, means that we will have to be very intentional in our designs of how people will use these technologies to be not only useful, but safe as well.”

Read more about Wang’s research on digital health technologies at UCSD. 

Congratulations, Edward!

Design Lab’s Edward Wang, who is a jointly appointed professor in Electrical & Computer Engineering in Jacobs School of Engineering at UC San Diego, wins a National Institutes of Health (NIH) R21 through the National Institute of Aging (NIA) for his work around transforming smartphones into pocket-sized personal health monitors. 

The NIA has selected Design Lab’s Edward Wang, who directs the Digital Health Lab, to receive NIH R21 funding for his work with Co-investigator Eric Granholm, Director of UCSD’s Center for Mental Health Technology (MHTech), to develop a smartphone app that can screen for early signs of cognitive decline indicative of Alzheimer’s Disease (AD). An NIH R21, also known as the Exploratory/Development Grant, provides support in the early and conceptual stages of a project’s development. As part of a national push towards combating the debilitating effects of AD, the National Institute of Aging looked towards funding novel ways to screen for AD through the use of digital technologies.

Edward Wang (left), Eric Granholm (right)

In the proposal, “Smartphone Pupillometer for At-Home Screening for Risk of Alzheimer’s Disease,” Wang, along with MHTech director and professor of Psychiatry Eric Granholm, aims to leverage camera systems found in smartphones to capture pupillary responses to cognitive tests as an indicator of the integrity of a specific part of the brain, the locus coeruleus, that has been shown to be one of the first sites affected by AD-related processes. By taking advantage of the smartphone as the vehicle for conducting such a test, Wang and Granholm believe that this approach of using digital technologies to capture physiological signals has the potential of significantly driving down the cost of deploying these screening solutions widely to combat public health challenges like AD. “By further enhancing the signals that are captured using just your phone with signal processing and machine learning, we are able to derive, what are known as, digital biomarkers,” Wang says. This approach strongly aligns with the NIA’s Notice of Special Interest, which states that “current biomarkers for early detection of prodromal AD […]  are costly and invasive”, and digital biomarkers “can be used to inform disease prediction and management at both the individual and populational level.” 

AD is a progressive degenerative disorder of the brain and is the sixth leading cause of death in the United States, with the latest statistics showing that at least five million Americans over the age of 65 suffer from the disease. Not only is it the most common form of dementia of elderly adults, it is projected that cases of AD will double by 2025. By 2050, it is projected that a total annual cost for health care for people with AD will be more than $1 trillion. ADis clearly a public health crisis. “Our solution is based on previous findings in our research with older adults with mild cognitive impairment, where we studied how differences in pupil dilation in response to memory tests are associated with very early signs of AD,” Granholm says. “It is based on these findings that we are developing this smartphone solution.” If successful, Granholm notes, it would be possible for older adults to perform this test even in the comforts of their own home or by their primary care provider. This is compared with what is available today, which are far more invasive solutions like PET/MRI imaging and lumbar puncture for biomarkers in the spinal fluid.  

As a faculty in the Design Lab, Wang has a particular interest in developing technologies through a lens of human centered design. Wang has had a record of inventing new smartphone-based health monitoring solutions such as hemoglobin/anemia screening, blood pressure monitoring, and ocular disease. In developing these solutions, Wang has worked with a wide range of collaborators across the world to develop and test these systems with end users to make sure that the purported solutions truly can work with the target users and in realistic conditions. “Sometimes what we find is that an idea works well in lab settings where we can control the lighting and temperature of the room, but completely fails in realistic conditions that screening tools like these have to operate under.”


Wang working in a village in the Amazon Jungle of Peru testing his smartphone hemoglobin monitor

In a previous workaround anemia screening, Wang worked with NGOs in Peru to bring his prototype app into villages nestled in the Amazonian Jungle, where NGO staff regularly travel to in order to perform anemia screening and treatments. “It turns out, we never considered that the main use case for our technology is really to screen for anemia in kids under 3 years old. Although the physics still holds, behaviorally, kids at that age are so different that we basically couldn’t get the kids to stay still long enough to be able to measure them with our app,” Wang reflects. “One of the common misconceptions in engineering research is that we can always build it to work better with enough resources once a technology leaves the lab,” Wang says, “The issue with that kind of approach  is that sometimes that can lead us into solutions that don’t have a chance of working. That is why human centered design being a central loop in the research is so important.”

Wang notes that keeping the elder user base in mind is crucial in the success of this research endeavor. “One of the things I think is particularly interesting in working on digital technology for the older population is that it requires a lot more nuances around usability,” Wang explains. “Our big hope is that [our app] works with little to no training with either home care providers or with the older adults themselves.” Wang cautions, however, that these solutions are far from ready and requires extensive research on how well such digital biomarkers can differentiate diseases and how they will ultimately serve in the entire ecosystem of healthcare. “Our research aims to solve big healthcare problems by looking for creative ways to invent new ways our society can screen and treat diseases. But this shift that brings healthcare closer to everyday life, literally into our pockets, means that we will have to be very intentional in our designs of how people will use these technologies to be not only useful, but safe as well.”

Read more about Wang’s research on digital health technologies at UCSD. 

Congratulations, Edward!

Read Next

Ucsd Design Lab Mikael Walhström

Designer in Residence & Social Psychologist Mikael Wahlström Leads Projects to Explore Autonomous Ships

The Design Lab welcomed Mikael Wahlström as a Designer in Residence this past fall. Wahlström…

Indigenous knowledge and advocacy is now seen as vital to the fight against climate change

As nations develop strategies to combat climate change, they're beginning to turn to solutions from the indigenous communities that have been on the front lines of the efforts to protect the planet.

A 2021 report from the indigenous rights organization, the ICCA, details just how much the rest of the world depends on indigenous communities for preserving planetary health.

"In Latin America and the Caribbean, Indigenous and tribal peoples manage between 330 and 380 million hectares of forest," the ICCA report said. "Those forests store more than one-eighth of all the carbon in the world’s tropical forests and house a large portion of the world’s endangered animal and plant species. Almost half (45 per cent) of the large ‘wilderness’ areas in the Amazon Basin are in Indigenous territories and several studies have found that Indigenous peoples’ territories have lower rates of deforestation and lower risk of wildfires than state protected areas."
Don Norman Zdnet Over Automating Uc San Diego

Software Developers and Designers Risk Over-Automating Enterprises

Don Norman of Cognitive Science and the Design Lab argues for human-technology teamwork among designers in…

Report: Military Remains Economic Bright Spot In San Diego

Report: Military remains economic bright spot in San Diego

Design Lab member Michael Meyer discusses San Diego's defense economy during Covid with ABC 10 News San Diego.

The coronavirus pandemic appears to have been no match for San Diego's defense economy, which a new report says keeps on growing.

The San Diego Military Advisory Council study says from the fiscal year 2020 to 2021, direct defense spending was $35.3 billion dollars, a 5.3 percent annual gain. Jobs grew 2 percent to nearly 349,112. In all, it made for a $55.2 billion dollar gross regional product.

"That means continued stability and economic prosperity for San Diego, buffered by, or provided by the military economy presence," said Michael Meyer, a professor at UC San Diego's Rady School of Management, which researched the report.

The study points out that military spending impacts more than the people employed by the federal government or serving on base or active duty. Instead, there's a multiplier effect in San Diego, with nearly 190,000 San Diegans employed by private companies contracting with the defense department -- such as in programming or shipbuilding.

"Retraining for electronics, computers, aviation, the engineering fields, the technical financial fields. That's all valuable and an effective way of getting into the military economy," Meyer said.
Design Lab #wearenotwaiting Nightscout Openaps

How DIY Designers are Impacting Healthcare

#WeAreNotWaiting is the social media movement of folks in the diabetes community who have come…

Design and Innovation Building Grand Opening: UCSD’s front door to community collaborations

In November of 2021, the UC San Diego Design Lab unveiled their long-awaited new home in the recently constructed Design and Innovation Building, or as it is affectionately referred to, the DIB. The DIB will serve as a hub for academia, industry and community innovators to participate in design events, lectures, and other working partnerships within the design community that aim to create human-centered solutions to the complex problems facing our region and beyond. The grand opening of the DIB showcased the potential for such gatherings, boasting the presence of organizations like the UCSD Design Co., Girls Who Code, and the Institute of Electrical and Electronics Engineers, to name a few. Such groups showcased current and past projects to the students, professors, and industry leaders in attendance. 

The opening of the DIB marks a momentous occasion in the history of the Design Lab, as the building itself, which is a multi-use environment bringing together multiple disciplines under one roof, represents the journey and philosophy at the heart of the Design Lab’s mission–making UC San Diego a world center for design research and education that fosters a new way of thinking, which addresses the core issues with a systems point of view, and emphasizing the role of people in the complex systems of the modern world.
Back To Top